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Abstract. In this note we study properties of utility functions suitable for
performance evaluation of dynamic economic models under uncertainty. At
first, we summarize basic properties of utility functions, at second we show
how exponential utility functions can be employed in dynamic models where
not only expectation but also the risk are considered. Special attention is
focused on properties of the expected utility and the corresponding certainty
equivalents if the stream of obtained rewards is governed by Markov dependence
and evaluated by exponential utility functions.
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1 Economic decisions and utility functions

Economic decisions are usually based on the outcome, say ξ, as viewed by the decision maker. Usually
the decision maker has no complete information on the problem, his decisions are made under some
kind of uncertainty. In general, the decision under uncertainty in its most simple form consists of three
nonempty sets I, A and X and a function f : I ×A 7→ X . In particular, I = {1, 2, . . . , N} characterizes
the uncertainty of the problem, elements of the set I are called states of the considered system (sometimes
called states of nature or of the world); A = {1, 2, . . . ,K} is the set of possible decisions (or actions) and
X is the set of outcomes of the decision problem equipped with a complete and transitive relation ≼ on
X . As concerns the relation ≼ that determines decision maker’s preference among elements of the set of
outcomes (and also preference among actions). In particular, if for ξ1, ξ2 ∈ X (resp. a1, a2 ∈ A) it holds
ξ1 ≼ ξ2 (resp. a1 ≼ a2) it means that outcome ξ2 (resp. decision a2) is at least as preferable as outcome
ξ1 (resp. decision a1). By completeness of the relation we mean that every two elements of X (resp. of
A) are related, i.e. given any ξ1, ξ2 ∈ X there are three possibilities: either ξ1 ≼ ξ2 but not ξ2 ≼ ξ1, then
we write ξ1 ≺ ξ2; or ξ2 ≼ ξ1 but not ξ1 ≼ ξ2, then we write ξ2 ≺ ξ1; or both ξ1 ≼ ξ2 and ξ2 ≼ ξ1, then we
write ξ2 ∼ ξ1. By transitivity we mean that ξ1 ≼ ξ2 and ξ2 ≼ ξ3 implies ξ1 ≼ ξ3 for any three elements
ξ1, ξ2, ξ3 ∈ X ; the same also holds for any three elements of the action set A.

Furthermore, in many decision problems on choosing action (decision) a ∈ A the outcome ξj ∈ X
occurs only with (individual’s subjective) probability paj for j = 1, 2, . . . , N (where

∑N
j=1 p

a
j = 1), which

is familiar to the decision maker (stochastic model). In this case we speak about lottery or prospect,
and let Y with generic y be the set of all lotteries or all probability distribution on Y. Obviously, if the
decision maker had a complete ranking of all lotteries on the set of outcomes, then he could obtain a
complete ranking of all decisions in A. To this end the decision maker can replace condition on complete
ordering of the set X by complete ordering of the set Y (see Axiom 1). Moreover, under some other
technical assumptions (Axioms 2,3 specified in the sequel), ordering of decision may be expressed by
numerical function, called the utility function.

Axiom 1. (Preference Ordering) The decision maker has a preference ordering defined on Y which
is a transitive and complete ordering.
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Axiom 2. (Continuity) If for y1, y2, y3 ∈ Y, y1 ≼ y2 ≼ y3, there exists an α ∈ [0, 1] such that
αy1 + (1− α)y3 ∼ y2.

Axiom 3. (Independence) If for y1, y2 ∈ Y, y1 ≼ y2, then for all α ∈ (0, 1] and all y ∈ Y

if y1 ≺ y2 then also αy1 + (1− α)y ≼ y2 + (1− α)y

if y1 ∼ y2 then also αy1 + (1− α)y ∼ y2 + (1− α)y

Theorem. Under Axioms 1–3 there exists a real-valued function u : X 7→ R, called utility function,
such that for all y1, y2 ∈ Y

y1 ≼ y2 if and only if Ey1 [u(ξ)] ≤ Ey2 [u(ξ)]

(Ey[·] is the expectation with respect to probability distribution induced by y ∈ Y).

Furthermore, u is unique up to a positive linear transformation, i.e. if ũ is another function with the
above property, there exists a positive scalar α1 and a scalar α2, such that ũ(ξ) = α1u(ξ) + α2.

For the proof of this fundamental theorem see e.g. [1], [2], [10].

In words: Economic decisions based on the outcome, say ξ, may be represented by an appropriate utility
function, say u(ξ) assigning a real number to each possible outcome ξ. Utility function u(ξ) must be
monotonically increasing, i.e. we assume that larger values of outcome are preferred, and unique up to
a positive linear transformation. Furthermore, in economic models we assume that utility functions are
concave.

In case of stochastic models outcome ξ is a random variable and we consider expectation of utilities
assigned to (random) outcomes, i.e. the value U(ξ) := Eu(ξ). Certain (or certainty) equivalent, say Z(ξ),
is then defined by u(Z(ξ)) := Eu(ξ) (in words, certainty equivalent is the value, whose utility is the same
as the expected utility of possible outcomes). Additional important concepts in the utility theory are
that of the

coefficient of absolute risk aversion defined by Ra(ξ) := −u
′′
(ξ)

u′ (ξ)
, along with

coefficient of relative risk aversion defined by Rr(ξ) := ξRa(ξ) = −ξ · u′′(ξ)
u′(ξ) .

1

For handling real life models decision makers must be able to express u(x) in a concrete form. Typical
utility functions are:

• Linear function: u(x) = a+ bx where b > 0

• Quadratic function: u(x) = a+ bx− cx2 where b > 0, c > 0.

• Logarithmic function: u(x) = a+ b ln(x+ c) where b > 0, c ≥ 0.

• Fractional function: u(x) = a− 1

x+ b
where b > 0, c > 0

• The function: u(x) =


x1−a for 0 < a < 1

lnx for a = 1

−x1−a for a > 1

Observe that then Rr(x) = a, i.e. coefficient of relative risk aversion is constant; this utility function
belong to the CRRA (Constant Relative Risk Aversion) utility functions.

• Exponential function: u(x) = −e−ax with a > 0

Introducing the so-called risk aversion coefficient γ ∈ R exponential utility functions, as well as linear
utility functions, assigned to a random outcome ξ can be also written in the following more compact form

uγ(ξ) =

{
(sign γ) exp(γξ), if γ ̸= 0

ξ for γ = 0.
(1)

1(here u′(ξ) = du(ξ)
dξ

, u′′(ξ) = d2u(ξ)

dξ2
).



Observe that exponential utility function considered in (1) is separable what is very important for se-
quential decision problems, i.e. uγ(ξ(1) + ξ(2)) = sign(γ)uγ(ξ(1)) · uγ(ξ(2)) for γ ̸= 0 and if γ = 0 for the
resulting linear utility function u(x) = bx we have uγ(ξ(1) + ξ(2)) = uγ(ξ(1)) + uγ(ξ(2)). Unfortunately,
considering stochastic models, in contrast to exponential utility functions, linear utility functions cannot
reflect variability-risk features of the problem. Obviously uγ(·) is continuous and strictly increasing, and
convex for γ > 0, so-called risk seeking case, and concave for γ < 0, so-called risk aversion case.

Furthermore, exponential utility functions

• are the most widely used non-linear utility functions, cf. [3],

• in most cases an appropriately chosen exponential utility function is a very good approximation for
general utility function, cf. [6].

If exponential utility (1) is considered, then for the corresponding certainty equivalent Zγ(ξ) given by

uγ(Zγ(ξ)) = E[(sign γ) exp(γξ)]

we have

Zγ(ξ) =

{
1
γ ln{E [exp(γξ)]}, if γ ̸= 0

E[ξ] for γ = 0.
(2)

Observe that if ξ is constant then Zγ(ξ) = ξ, if ξ is nonconstant then by Jensen’s inequality

Zγ(ξ) > Eξ (if γ > 0, the risk seeking case)

Zγ(ξ) < Eξ (if γ < 0, the risk averse case)

Zγ(ξ) = Eξ (if γ = 0, the risk neutral case)

The following facts will be useful in the sequel:

1. For U (γ)(ξ) := Euγ(ξ), i.e. U (γ)(ξ) := E exp(γξ), the Taylor expansion around γ = 0 reads

U (γ)(ξ) = 1 + E
∞∑
k=1

(γξ)k

k!
= 1 +

∞∑
k=1

γk

k!
· Eξk. (3)

Observe that in (3) the first (resp. second) term of the Taylor expansion is equal to γEξ (resp.
1
2 (γ

2)Eξ2). In particular, if for random variables ξ, ζ with Eξ = Eζ it holds Eξ2 < Eζ2 (or equivalently

var ξ < var ζ) and Eξk are uniformly bounded in k then there exists γ0 > 0 such that U (γ)(ξ) < U (γ)(ζ)
for any γ ∈ (−γ0, γ0).

2. In economic models (see e.g. [1], [10]) we usually assume that the utility function u(·) is increasing
(i.e. u′(·) > 0), concave (i.e. u′′(·) < 0) with u(0) = 0 and u′(0) < ∞ (so called the Inada condition).

Since a positive linear transformation of the utility function uγ(ξ) preserves the original preferences
(see the Theorem, cf. also [1],[10]) we shall also consider the utility functions

ūγ(x) = 1− exp(γx), where γ < 0 (the risk averse case) (4)

ũγ(x) = exp(γx)− 1, where γ > 0 (the risk seeking case) (5)

and the function ūγ(x) satisfies all above conditions imposed on a utility function in economy theory.
Observe that the Taylor expansions of ūγ(x) and of ũγ(x) read

ūγ(x) =
∞∑
k=1

(−1)k+1 |γ|k

k!
· xk, where γ < 0, ũγ(x) =

∞∑
k=1

γk

k!
· xk, where γ > 0 (6)

and if x = ξ is a random variable for the expected utilities we have

Ūγ(ξ) := Eūγ(ξ) = 1− U (γ)(ξ) =
∞∑
k=1

(−1)k+1 |γ|k

k!
· Eξk (7)

Ũγ(ξ) := Eũγ(ξ) = U (γ)(ξ)− 1 =
∞∑
k=1

γk

k!
· Eξk. (8)



Illustrative example. Consider an individual that may repeatedly bet $1 on the toss of a fair coin or
not bet at all. f he bets and guesses correctly he wins $2, if he does not guess correctly, he losses $1 and
if he decides not to bet he receives compensation $1. Here the state space I consists of two elements H
(head) and T (tail). The action set A consists of three elements A = {a0, a1, a2} where decision a0 is not
to bet, decision a1 is bet on heads and decision a2 is bet on tails. Then the set of outcomes X = {0, 1, 2}
and the values of the function f : I × A 7→ X are given by f(H, a0) = 1, f(T, a0) = 1, f(H, a1) =
2, f(T, a1) = 0, f(T, a2) = 2, f(H, a2) = 0. Moreover, we may consider also some kind of lottery in the
decision process, in particular we may assume that the selected decision occurs in accordance with a given
probability mechanism.
Now we need a ranking among decisions that is consistent in a well-defined sense with our ranking of
outcomes. Moreover, according to Theorem the ranking should be determined by a numerical function
u(·) that maps the set of decisions A to the set of real numbers such that ai ≼ aj if and only if
u(ai) ≼ u(aj) for all ai, aj ∈ A and i ̸= j. If u(·) is linear, i.e. u(x) = x then Ea0u(ξ) = 1, Ea1u(ξ) =
Ea2u(ξ) = 1

2 (2+ 0) = 1, hence then the resulting expectation of the linear utility function is independent
of the selected decision, i.e. a0 ∼ a1 ∼ a2. However, using the exponential utility function uγ(x) optimal
decision depends on the value of the risk aversion coefficient γ ̸= 0. In particular, again Ea0u(ξ) = 1, but
Ea1u(ξ) = Ea2u(ξ) = 1

2 (e
γ2 + 1). Hence if γ > 0 then a0 ≺ a1 ∼ a2 and if γ < 0 then a1 ∼ a2 ≺ a0.

Up to now we have studied properties of utility functions for models of “static” (stochastic) systems
where the uncertainty is represented by the decision maker’s ignorance of the “current state” of the
system along with possibly probabilistic behavior of the outcome. In the sequel we focus attention on
systems that develop over time and the decision maker need not have complete information of the state
of the system and where additional decision can be taken if the individual guesses correctly.

2 Separable utility functions in stochastic dynamic models

2.1 Complete information on state

Consider a family of models for decision under uncertainty formulated in Section 1 specified by nonempty
sets I, A along with a family of X (i) (for = 1, 2, ...N) with individual probabilities paij for i, j =

1, 2, . . . , N ; a = 1, 2, ...,K (of course,
∑N

j=1 p
k
ij = 1), familiar to the decision maker along with his (or her)

knowledge of the current state of the system. This represents a Markov decision chain X = {Xn, n =
0, 1, . . .} with finite state space I = {1, . . . , N}, finite set Ai = {1, 2, . . . ,K} of possible decisions (actions)
in state i ∈ I and the following transition and reward structure:

paij : transition probability from i → j; raij : one-stage reward for a transition from i → j

Policy controlling the chain is a rule how to select actions in each state. In this note, we restrict on
stationary policies, i.e. the rules selecting actions only with respect to the current state of the Markov
chain X. Then a policy, say π, is determined by some decision vector f whose ith element fi ∈ A
identifies the action taken if the chain X is in state Xn = i; hence also the transition probability matrix
P (f) of the Markov decision chain. Observe that the ith row of P (f) has elements pfii1, . . . , p

fi
iN and that

P ∗(f) = limn→∞ n−1
∑n−1

k=0 [P (f)]k exists. In what follows, R(f) = [rfiij ] is the transition reward matrix,
i.e. R(f) is an N ×N matrix of one-stage rewards (for details see e.g. [7]).

If the chain starts in state i and policy π ∼ (f) is followed, let ξ
(n)
i (π) (abbreviated as ξ(n)) be the

total reward received in the n next transition of the Markov chain X and ξ
(m,n)
Xm

(π) be the total reward
received in the n−m next transition if the Markov chain was after m first transition in state Xm. Then for
the expected (exponential) utility Uπ

i (γ, n), the certainty equivalent Zπ
i (γ, n) and its mean value Jπ

i (γ)
we have

Uπ
i (γ, n) := Eπ

i [exp(γξ
(n))] = Eπ

i exp[γ (ri,X1 + ξ
(1,n)
X1

)], (9)

Zπ
i (γ, n) :=

1

γ
ln{Eπ

i [exp(γξ
(n))]} for γ ̸= 0, (10)

Jπ
i (γ) := lim

n→∞

1

n
Zπ
i (γ, n) (11)

and hence for the expectation of the utility functions ūγ(ξ(n)) and ũγ(ξ(n)) we have (cf. (8),(8))

Ūπ
i (γ, n) := 1− Uπ

i (γ, n), Ũπ
i (γ, n) := Uπ

i (γ, n)− 1. (12)



Conditioning in (9) on X1, since policy π ∼ (f) is stationary, from (9) we immediately get the
recurrence formula

Uπ
i (γ, n+ 1) =

∑
j∈I

pfiij · e
γrij · Uπ

j (γ, n) =
∑
j∈I

qfiij · Uπ
j (γ, n) with Uπ

i (γ, 0) = 1 (13)

or in vector notation and by iterating

Uπ(γ, n+ 1) = Q(f) ·Uπ(γ, n) = (Q(f))n · e with Uπ(γ, 0) = e, (14)

where Q(f) = [qfiij ] with qfiij := pfiij · eγrij , Uπ(γ, n) is the vector of expected utilities with elements
Uπ
i (γ, n) and e is a unit (column) vector.

Observe that Q(f) is a nonnegative matrix, and by the Perron–Frobenius theorem (cf. [4]) the spectral
radius ρ(f) of Q(f) is equal to the maximum positive eigenvalue of Q(f). Moreover, if Q(f) is irreducible
(i.e. if and only if P (f) is irreducible) the corresponding (right) eigenvector v(f) can be selected strictly
positive, i.e.

ρ(f)v(f) = Q(f) · v(f) with v(f) > 0. (15)

Moreover, under the above irreducibility condition it can be shown (cf. e.g. [5], [9]) that there exists
decision vector f∗ ∈ A such that

Q(f) · v(f∗) ≤ ρ(f∗)v(f∗) = Q(f∗) · v(f∗), (16)

ρ(f) ≤ ρ(f∗) ≡ ρ∗ for all f ∈ A (17)

and decision vector f̂ ∈ A such that

Q(f) · v(f̂) ≥ ρ(f̂)v(f̂) = Q(f̂) · v(f̂) (18)

ρ(f) ≥ ρ(f̂) ≡ ρ̂ for all f ∈ A. (19)

In words, ρ(f∗) ≡ ρ∗ (resp. ρ(f̂) ≡ ρ̂) is the maximum (resp. minimum) possible positive eigenvalue of
Q(f) over all f ∈ A.

If the Perron eigenvectors v(f∗) = v∗, v(f̂) = v̂ are strictly positive, there exist positive numbers
α1 < α2 such that α1v̂ ≤ e ≤ α2v

∗ and hence by (16), (18) and by (10),(11)

α1ρ̂
nv̂ ≤ Uπ(γ, n) ≤ α2(ρ

∗)nv∗ (20)

n ln(ρ̂) + ln(α1v̂i) ≤ γZπ
i (γ, n) ≤ n ln(ρ∗) + ln(α2v

∗
i ) (21)

γ−1 ln(ρ̂) ≤ Jπ
i (γ) ≤ γ−1 ln(ρ∗) (22)

From (20),(21),(22) we can see that the asymptotic behavior of Uπ(γ, n) heavily depends on ρ∗, ρ̂, and
that the maximum, resp. minimum, growth rate of each Uπ

i (γ, n) is independent of the starting state.
Similarly, Jπ

i (γ) (mean value of the corresponding certainty equivalent Zπ
i (n, γ) growing linearly in time)

is independent of the starting state and bounded by ln(ρ̂) and by ln(ρ∗).

2.2 Incomplete information on state

In what follows we assume that the decision maker has no information of the current state of the system,
but he knows current values of the obtained rewards. Moreover, he can also employ results concerning
optimal policy obtained in subsection 2.1, i.e. the decision maker knows optimal actions in each state
of the system. His knowledge of the system structure and optimal control policy along with information
of current values of obtained rewards (“signalling information”) may help him to selected optimal or
suboptimal policy. In what follows we sketch how to handle such problems on examples slightly extending
our illustrative example and reformulate it in terms of Markov decision chains (MDC).

Illustrative example: Formulation as MDC. Consider a Markov decision chain with state space
I = {H,T}, actions a1, a2 in each state and the following transition and reward structure:

pa1

HH = 1
2 , r

a1

HH = 2; pa1

HT = 1
2 , r

a1

TT = 0; pa2

HH = 1
2 , r

a2

HH = 0; pa2

HT = 1
2 , r

a2

HT = 2;

pa1

TT = 1
2 , ra1

TT = 0; pa1

TH = 1
2 , ra1

TH = 2; pa2

TH = 1
2 , r

a2

TH = 0; pa2

TT = 1
2 , r

a2

TT = 2.



Recall that a1, a2 is bet on heads, tails respectively; we ignore decision a0 not to bet. In what follows
qaij = paijexp(γr

a
ij) for a = a1, a2 and i, j = H,T , in particular, qaij =

1
2 exp(γ2) or q

a
ij =

1
2 · 1.

Hence each row of the resulting 2 × 2 matrix Q(·) = [qkij ] contains a single element 1
2 exp(γ2) and 1

2 .

Hence the spectral radius of each Q(·) equals 1
2 [exp(γ2) + 1] and constant vector is the corresponding

right eigenvector. Since decision a0 (not to bet) brings unit reward, if the risk aversion coefficient γ is
positive, the decision maker should prefer betting on heads or on tails, if γ is negative optimal decision
is not to bet.

Extended illustrative example: Formulation as MDC. Suppose that in the considered Illustra-
tive Example an individual can extend options after his betting on heads and guessing correctly. The
additional action is to bet $1 on heads and toss of an unfair coin (probability of head 1

3 , probability of
tail 2

3 ). If he guesses correctly receives $3 and can repeat such bet.
To this end consider a Markov decision chain with state space I = {H,T, H̄} and slightly modified
transition and reward structure of the previous example by replacing transition from state H if action a1
(instead of pa1

HH = 1
2 , r

a1

HH = 2) by pa1

HH̄
= 1

2 , r
a1

HH̄
= 2 and define transitions and rewards in state H̄ as:

pa1

H̄H̄
= 1

2 , r
a1

H̄H̄
= 2; pa1

H̄T
= 1

2 , r
a1

H̄T
= 0; pa2

H̄H
= 1

2 , r
a2

H̄H
= 0; pa2

H̄T
= 1

2 , r
a2

H̄T
= 2;

pa3

H̄H̄
= 1

3 , ra3

H̄H̄
= 3; pa3

H̄T
= 2

3 , r
a3

H̄T
= 0.

Obviously, if action a3 is not selected in state H̄ the problem can be treated as the previous one. To this
end we focus attention on policies selecting decision a3 and starting with decision a1. Then the spectral

radius of the corresponding 3 × 3 matrix Q(·) =

 0 1
2

1
2
eγ2

1
2

1
2
eγ2 0

0 2
3

1
3
eγ3

 is greater than 1
2 [exp(γ2) + 1]

(observe that 2
3 + 1

3e
γ3 > 1

2 + 1
2e

γ2 for each γ > 0).

Conclusions

In this note basic facts concerning decision under uncertainty along with typical utility functions are
summarized. Special attention is focused on properties of the expected utility and the corresponding
certainty equivalent if the stream of obtained rewards is governed by Markov dependence and evaluated
by exponential utility functions.
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